Part Number Hot Search : 
RFB300 AR3009 E1712 MS1403 PA1312NL PI49FCT UZ7706 SP88201
Product Description
Full Text Search
 

To Download AUIRFR3504Z Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  AUIRFR3504Z hexfet ? power mosfet  www.kersemi.com 1 automotive grade pd - 97492 description specifically designed for automotive applications, this hexfet ? power mosfet utilizes the latest processing techniques to achieve extremely low on- resistance per silicon area. additional features of this design are a 175c junction operating tempera- ture, fast switching speed and improved repetitive avalanche rating . these features combine to make this design an extremely efficient and reliable device for use in automotive applications and a wide variety of other applications. features advanced process technology low on-resistance 175c operating temperature fast switching repetitive avalanche allowed up to tjmax lead-free, rohs compliant automotive qualified * s d g v (br)dss 40v r ds(on) max. 9.0m ? i d (silicon limited) 77a i d (package limited) 42a absolute maximum ratings stresses beyond those listed under ?absolute maximum ratings? may cause permanent damage to the device. these are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. the thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. ambient temperature (t a ) is 25c, unless otherwise specified. gds gate drain source d-pak    parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, vgs @ 10v (silicon limited) a i d @ t c = 25c continuous drain current, v gs @ 10v (packa g e limited) i dm p u l se d d ra i n c urren t p d @ t c = 25c power dissipation w linear derating factor w/c v gs gate-to-source volta g e v e as single pulse avalanche energy (thermally limited)  mj e as (tested ) single pulse avalanche energy tested value  i ar a va l anc h e c urren t  a e ar r epe titi ve a va l anc h e e ner gy  mj t j operatin g junction and t stg stora g e temperature ran g ec soldering temperature, for 10 seconds (1.6mm from case ) mounting torque, 6-32 or m3 screw thermal resistance parameter t y p. max. units r jc j unc ti on- t o- c ase  ??? 1.66 r ja j unc ti on- t o- a m bi en t (pcb moun t)  ??? 40 c/w r ja junction-to-ambient ??? 110 110 77 see fig.12a, 12b, 15, 16 90 0.60 20 max. 77 54 310 42 -55 to + 175 300 10 lbf  in (1.1n  m)

2 www.kersemi.com s d g static electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. t y p. max. units v (br)dss drain-to-source breakdown volta g e40??????v ? v (br)dss / ? t j breakdown volta g e temp. coefficient ??? 0.032 ??? v/c r ds(on) static drain-to-source on-resistance ??? 8.23 9.0 m ? v gs(th) gate threshold volta g e 2.0 ??? 4.0 v g fs forward transconductance 32 ??? ??? s i dss drain-to-source leaka g e current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leaka g e ??? ??? 200 na gate-to-source reverse leaka g e ??? ??? -200 dynamic electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. t y p. max. units q g total gate char g e ??? 30 45 q gs gate-to-source char g e ??? 9.6 ??? nc q gd gate-to-drain ("miller") char g e ??? 12 ??? t d(on) turn-on dela y time ???15??? t r rise time ???74??? t d(off) turn-off dela y time ???30???ns t f fall time ???38??? l d internal drain inductance ??? 4.5 ??? between lead, nh 6mm (0.25in.) l s internal source inductance ??? 7.5 ??? from packa g e and center of die contact c iss input capacitance ??? 1510 ??? c oss output capacitance ??? 340 ??? c rss reverse transfer capacitance ??? 190 ??? pf c oss output capacitance ??? 1100 ??? c oss output capacitance ??? 340 ??? c oss eff. effective output capacitance ??? 460 ??? diode characteristics parameter min. t y p. max. units i s continuous source current ??? ??? 42 (body diode) a i sm pulsed source current ??? ??? 310 (body diode)  v sd diode forward volta g e ??? ??? 1.3 v t rr reverse recover y time ??? 18 27 ns q rr reverse recover y char g e???9.214nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) conditions v ds = 10v, i d = 42a i d = 42a v ds = 32v v gs = 20v v gs = -20v conditions v gs = 10v  v gs = 0v v ds = 25v ? = 1.0mhz v gs = 0v, v ds = 1.0v, ? = 1.0mhz v gs = 0v, v ds = 32v, ? = 1.0mhz v gs = 0v, v ds = 0v to 32v  mosfet symbol showing the integral reverse p-n junction diode. t j = 25c, i s = 42a, v gs = 0v  t j = 25c, i f = 42a, v dd = 20v di/dt = 100a/ s  conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 42a  v ds = v gs , i d = 250a v ds = 40v, v gs = 0v v ds = 40v, v gs = 0v, t j = 125c v gs = 10v  v dd = 20v i d = 42a r g = 15 ?

www.kersemi.com 3 qualification information ? d-pak msl1 qualification level automotive (per aec-q101) ?? comments: this part number(s) passed automotive qualification. ir?s industrial and consumer qualification level is granted by extension of the higher automotive level. charged device model class c5 aec-q101-005 moisture sensitivity level rohs compliant yes esd machine model class m4 aec-q101-002 human body model class h1c aec-q101-001   
 
      

 
 
  

    
 
 !"!#

 
# 
  


4 www.kersemi.com fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. typical forward transconductance vs. drain current 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 30s pulse width tj = 175c 4.5v vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 4.0 5.0 6.0 7.0 8.0 9.0 10.0 v gs , gate-to-source voltage (v) 0.1 1.0 10.0 100.0 1000.0 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 20v 30s pulse width t j = 25c t j = 175c 0 1020304050 i d, drain-to-source current (a) 0 10 20 30 40 50 60 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 10v 380s pulse width 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 30s pulse width tj = 25c 4.5v vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v

www.kersemi.com 5 fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 0 500 1000 1500 2000 2500 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 1020304050 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 32v vds= 20v vds= 8.0v i d = 42a for test circuit see figure 13 0.2 0.6 1.0 1.4 1.8 2.2 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 1000.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 0 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec a nce

6 www.kersemi.com fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. normalized on-resistance vs. temperature 25 50 75 100 125 150 175 t c , case temperature (c) 0 20 40 60 80 i d , d r a i n c u r r e n t ( a ) limited by package -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 42a v gs = 10v 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 1.117 0.000536 0.5422 0.004428 j j 1 1 2 2 r 1 r 1 r 2 r 2 c ci i / ri ci= i / ri

www.kersemi.com 7 q g q gs q gd v g charge !"$ fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 40 80 120 160 200 240 280 320 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 5.0a 6.4a bottom 42a -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 2.0 2.5 3.0 3.5 4.0 4.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 1k vcc dut 0 l

8 www.kersemi.com fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7.  t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming  tj = 25c due to avalanche losses. note: in no case should tj be allowed to exceed tjmax 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 20 40 60 80 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 42a

www.kersemi.com 9 fig 17. %&'  ()(
*
 
 for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period +

    + + - + + + - - -     
 ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"   
 v ds 90% 10% v gs t d(on) t r t d(off) t f
  &' 1 ( 
#   0.1 %  
    
+ -
 fig 18a. switching time test circuit fig 18b. switching time waveforms

10 www.kersemi.com  

  
      
   d-pak part marking information     '
  ,-, ..-. &.& -

(/01 %
2 0 3 0
 

www.kersemi.com 11 tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl notes : 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters ( inches ). 3. outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch   

  !  "#$ 
      
  


▲Up To Search▲   

 
Price & Availability of AUIRFR3504Z

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X